DIAGNÓSTICO AMBIENTAL
E DESENVOLVIMENTO DE SISTEMAS
DE IMPLEMENTAÇÕES DE PROJETOS
DE RECUPERAÇÃO DA QUALIDADE DOS
CORPOS D’ÁGUA

VOLUME I - Levantamento
básico do município
PREFEITURA MUNICIPAL DE RIO CLARO - SP

DIAGNÓSTICO AMBIENTAL E DESENVOLVIMENTO DE SISTEMAS DE IMPLEMENTAÇÕES DE PROJETOS DE RECUPERAÇÃO DA QUALIDADE DOS CORPOS D’ÁGUA

RIO CLARO - SÃO PAULO
2014
RESUMO

O presente estudo de Diagnóstico e Desenvolvimento de Sistemas de Implementações de Projetos de Recuperação da Qualidade dos Corpos d'água do município de Rio Claro/SP é fruto de convênio entre a Prefeitura de Rio Claro e o Fundo Estadual de Recursos Hídricos - FEHIDRO, Contrato 140/2013 - SECOFEHIDRO, Contrato 271/2013 Prefeitura Municipal de Rio Claro e foi desenvolvido pela Empresa EcosBio - Projetos Agroindustriais e Ambientais Ltda - EPP.

O estudo é pautado na técnica aerofotogramétrica e no levantamento de campo realizado em todo território municipal, onde a somatória das informações serviu de base para a composição do Sistema de Informação Geográfica (SIG) dos temas específicos e para interpretação e interpolação dos dados.

O material está dividido em quatro volumes, sendo: Volume I referente às características básicas do município; Volume II corresponde aos dados sobre hidrografia; Volume III discorre sobre o solo, a vegetação e o sistema viário e o último Volume, o IV trata da fragilidade e dinâmica ambiental, bem como das recomendações e prioridades frente ao diagnóstico gerado.

Os volumes são autoexplicativos, não dependem de consultas para interpretação dos dados e ainda, são compostos por referencial cartográfico básico e temático, na parte pós-textual dos mesmos. Cada volume encontra-se em mídia e extensão pdf, acompanhado dos arquivos cartográficos abertos no formato shapefile, em SIG, programa QGIS, versão 2.2.0.

SUMÁRIO

Capítulo I - Contextualização
1. IMPORTÂNCIA DO TEMA.. 06
2. OBJETIVOS DO DIAGNÓSTICO.. 11
 2.1. Objetivo geral... 11
 2.2. Objetivos específicos.. 11

Capítulo II - Caracterização
1. CARACTERIZAÇÃO DO MUNICÍPIO DE RIO CLARO.. 13
 1.1. Localização... 13
 1.2. Histórico... 14
 1.3. Formação administrativa... 16
 1.4. População.. 17
 1.5. Aspectos socioeconômicos... 18
 1.6. Aspectos físicos... 22
 1.6.1. Clima.. 23
 1.6.2. Hidrografia... 24
 1.6.3. Geologia... 27
 1.6.4. Geomorfologia.. 28
 1.6.5. Mineração... 29
 1.6.6. Áreas contaminadas segundo órgão competente.. 31
 1.7. Aspectos bióticos.. 32
 1.7.1. Vegetação... 32
 1.7.2. Fauna.. 38
 1.8. Gestão ambiental.. 39

Capítulo III - Levantamento Cartográfico
1. LEVANTAMENTO CARTOGRÁFICO BÁSICO... 42
 1.1. Altimetria.. 47
 1.2. Geologia... 48
 1.3. Geomorfologia.. 54
 1.4. Hipsometria... 55
1.5. Declividade... 57
1.6. Pedologia... 60
1.7. Micrincipias hidrográficas.. 66

REFERÊNCIAS BIBLIOGRÁFICAS... 70
APÊNDICES.. 75
Capítulo I - Contextualização
1. IMPORTÂNCIA DO TEMA

Essencialmente, com o advento da resolução industrial houve um acelerado desenvolvimento da humanidade, marcado também pela abusiva exploração dos recursos naturais sem a menor preocupação com as fontes esgotáveis. A poluição da água e do solo associada ao desmatamento, a extinção de espécies bióticas, a falta de água potável, os desastres terrestres, os acidentes nucleares e o aquecimento global são apenas alguns dos eminentes problemas que o planeta vive atualmente (UNESCO, 2012).

O descaso do passado frente às atrocidades do presente estão construindo um futuro ambientalmente pouco conhecido, sendo assim a preservação ambiental torna-se a medida central, pois com a expansão demográfica e o aumento das tecnologias industriais, as áreas mais reservadas do meio ambiente estão cada vez mais ameaçadas.

Embora o mundo inteiro esteja envolvido com a temática, a degradação ambiental aumentou de forma progressiva e gradual. Concomitantemente, aos prejuízos ambientais mundiais estão os das esferas federal, estadual e regional. Estudos ambientais no território brasileiro são necessários para melhor gerenciamento do espaço ambiental, especialmente das legislações, no sentido de conter o elevado nível de degradação.

Com 290 milhões de hectares de florestas e 8.233 km³1 da água doce do planeta, o Brasil, enquanto, apresenta a maior disponibilidade de recursos hídricos renováveis (UNESCO, 2012), também está listado no ranking das dez florestas mais ameaçadas do mundo, sendo o Estado de São Paulo considerado uma das regiões biologicamente mais rica (CONSERVAÇÃO INTERNACIONAL, 2011).

Entre um dos estados brasileiros mais produtivos e com maior área industrializada do país, tem-se o Estado de São Paulo. Apenas estes dois fatores justificam a importância de estudos diagnósticos visando manter o bioma característico e a redução do impacto do

1 Medida da geografia política da água (Km³), onde um quilômetro cúbico é uma unidade de volume, que corresponde ao volume de um cubo com um quilômetro de aresta.
desmatamento, bem como a perturbação das áreas verdes e o desenvolvimento de tecnologias limpas e autossustentáveis.

No Estado de São Paulo, a presença de bioma de Mata Atlântica e Cerrado são de importância global, com uma área de 248 mil km². Ele tem 1 milhão de hectares de matas ciliares sem vegetação; 120 mil km de cursos d’água desprotegidos e toda a vegetação de Cerrado está sob perturbação. Ademais, somente 8% da Mata Atlântica é constituída de remanescente original, 13,7% da vegetação tem características de vegetação nativa e 40% do território está suscetível à erosão (INVENTÁRIO FLORESTAL, 2002).

No interior do Estado, Rio Claro apresenta uma área de vegetação natural de 2.231 hectares que engloba a Floresta Estadual "Edmundo Navarro de Andrade". O município faz parte da Bacia Hidrográfica do Rio Corumbataí que também oferece fortes indícios de degradação oriundos, sobretudo do processo de industrialização (CEAPLA, 2010).

A Política Ambiental Municipal está embasada na Lei nº 4026/2010 que institui a Política Municipal de Educação Ambiental em Rio Claro; na Lei nº 3245/2001 que institui a Semana da Água no município, a última semana de setembro; na Lei nº 3886/2008 que institui o dia 28 de setembro como o dia do Rio Corumbataí; na Lei nº 3995/2009 que institui o calendário com datas comemorativas ambientais e na Lei nº 3499/2004 - Código de Proteção das Águas do Município de Rio Claro/SP (PREFEITURA MUNICIPAL DE RIO CLARO, 2013).

Ainda relacionado ao município existe uma ampla pesquisa científica de estudos ambientais, contudo limitada espacialmente para um diagnóstico, como: Frederice et. al., (2010), que realizaram diagnóstico ambiental em bairros determinados, destacando a ocupação irregular de algumas APPs; Cunha et. al., (2009) que desenvolveram um estudo diagnóstico sobre as condições de drenagem urbana, onde apontaram comprometimento na qualidade das águas devido ao sistema classificado como ineficiente; Cardoso-Leite et. al., (2004) investigaram ainda os fragmentos de mata ciliar de um dos córregos afluentes responsável pelo abastecimento de água; dentre outros estudos.

Nota-se assim, uma clara necessidade da realização de estudos que caracterizem o município de uma forma mais ampla, abrangendo-o como um todo para uma adequada gestão. A realização de um diagnóstico na área de estudo leva a considerar os aspectos socioeconômicos, físicos e bióticos atualmente encontrados, de modo a verificar as condições de conservação dos recursos hídricos e seus condicionantes.
Um dos pontos atualmente preocupantes no município refere-se aos recursos hídricos, que estão em sua maioria, em processo iminente de assoreamento, especialmente pela pouca ou inexpressiva área de mata ciliar e pelo manejo inadequado do solo apresentando-se com pouca cobertura vegetal. Estes fatores acarretam inúmeros problemas, dentre eles o comprometimento da qualidade e da quantidade das águas para abastecimento humano.

No ano de 2001, estimava-se que mais de 1 bilhão de pessoas viviam em condições insuficientes de disponibilidade hídrica para consumo, e que em 25 anos, aproximadamente 5,5 bilhões estarão em áreas com moderada ou séria falta de água. Consequência da ideia de abundância dos recursos hídricos, havendo durante muito tempo o desperdício da água disponível, sua pouca valorização como recurso e o adiamento dos investimentos necessários à otimização deste uso (ANEEL, 2001).

Neste contexto, o conjunto de imagens a seguir ilustra o cenário atual de alguns corpos d'água do município de Rio Claro. Em especial, o Rio Corumbataí, responsável por 60% da captação de água municipal que em determinados trechos, também apresenta-se ambientalmente impactado.

Imagem 01. Ilustrativo atual dos recursos hídricos do município de Rio Claro.

| Rio Corumbataí | Rio Cabeça |
Paralelamente a estes, os aspectos socioeconômicos atrelados ao aumento na demanda de água, bem como a degradação de sua qualidade acabam por expandir em grandes dimensões, essencialmente pela apropriação e exploração dos recursos naturais, resultado dos desordenados processos de urbanização, expansão agrícola e industrialização.

Os problemas pertinentes à ausência de um adequado sistema de gestão das águas ganha importância, à medida que o predomínio encontra-se presente, não apenas no município em estudo, mas em outras localidades. Assim, na busca de estratégias para resolução das questões ambientais, a administração pública opera como gestora ambiental...
que representa os fatores socioeconômicos fundamentais à conservação e preservação do recurso.

O conhecimento requerido e abordado sobre o município junto aos fatores que o envolvem se faz imprescindível para um posicionamento de medidas necessárias para abrandar os impactos negativos refletidos no meio visando à recuperação do recurso hídrico e a implementação de sistemas que possam garantir a qualidade da água para o abastecimento em geral.
2. OBJETIVOS DO DIAGNÓSTICO

2.1. Objetivo geral

O presente estudo tem como objetivo geral diagnosticar as condições das áreas de preservação permanente (APPs) e suas matas ciliares, bem como a qualidade das águas nas bacias hidrográficas, as nascentes existentes e os fragmentos remanescentes. Além disso, busca-se elaborar um plano de prioridades para a gestão ambiental do município referente ao gerenciamento dos recursos hídricos e gerar subsídios para a elaboração de um plano de macrodrenagem.

2.2. Objetivos específicos

- Diagnosticar as condições das APPs e suas devidas matas ciliares, bem como a qualidade das águas nas microbacias do município;
- Identificar, localizar e georreferenciar as nascentes existentes;
- Georreferenciar os fragmentos remanescentes de mata nativa;
- Elaborar um plano de prioridades para a gestão ambiental do município, no que diz respeito ao gerenciamento dos recursos hídricos;
- Gerar subsídios para elaboração de um plano de macrodrenagem para o município de Rio Claro.
Capítulo II - Caracterização
1. CARACTERIZAÇÃO DO MUNICÍPIO DE RIO CLARO

A caracterização do município foi realizada através de um levantamento bibliográfico, em relação ao meio físico, biótico e socioeconômico fundamentado em informações de fontes primárias e secundárias visando à caracterização global do objeto em estudo.

As principais bases consultadas estão relacionadas abaixo:

- Organização das Nações Unidas para a Educação, a Ciência e a Cultura - UNESCO;
- Instituto Brasileiro de Geografia e Estatística - IBGE;
- Fundação Sistema Estadual de Análise de Dados - SEADE;
- Instituto de Pesquisa Tecnológica - IPT;
- Coordenadoria de Assistência Técnica Integrada - CATI;
- Levantamento Censitário das Unidades de Produção - LUPA;
- Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura - CEPAGRI;
- Centro de Analise e Planejamento Ambiental - CEAPLA/IGC/UNESP;
- Instituto Florestal;
- Prefeitura Municipal de Rio Claro;
- Câmara Municipal de Rio Claro.

1.1. Localização

O município de Rio Claro localiza-se no centro-leste do Estado de São Paulo, entre as coordenadas 22º14’ e 22º33’ S; e 47º27’ e 47º46’ O, com área territorial de 498,422km². Na Figura a seguir, apresenta-se a localização de Rio Claro com seus oito municípios limítrofes, os quais são: Leme, Araras, Santa Gertrudes, Iracemápolis, Piracicaba, Ipeúna, Itirapina e Corumbataí (Figura 01).
Figura 01. Localização de Rio Claro entre os municípios limitrofes.

Rio Claro constitui-se como um dos municípios do Polo Cerâmico de Santa Gertrudes (indústria cerâmica e mineração), com parque industrial especializado na produção de pisos e revestimentos, considerado o principal aglomerado produtivo minero-cerâmico do País (IPT, 2012).

1.2. Histórico

As primeiras denominações para o município de Rio Claro foram São João Batista do Ribeirão Claro ou São João Batista do Morro Azul. Os indícios de povoamento da região remontam ao século XVIII, quando tropeiros que se dirigiam às minas de Cuiabá utilizavam como ponto de parada e descanso às margens do Córrego da Servidão. A área encontrava-se praticamente inexplorada, conhecida por “campos” ou “sertões de Araraquara”.

Entre os anos de 1821 e 1824, foram instaladas inúmeras fazendas, voltadas para a produção de açúcar e café, as quais duas destacaram-se: uma estabelecida pela família Pereira, em uma esplanada inclinada para o Córrego da Servidão, entre o Ribeirão Claro e o Rio Corumbataí; e a outra, família Costa Alves, que ergueram mais ao norte uma capela à beira do Rio Corumbataí. Deste modo, constituíram-se os dois principais núcleos de origem de Rio Claro, que a partir de 1826, passaram a pleitear o direito de ser sede de curato.

Para solucionar a divergência quanto à fixação da localidade, Antônio Paes de Barros, o Barão de Piracicaba sugeriu a construção de outra capela em novo local, no limite entre os dois povoados, em terras pertencentes ao Manuel Paes de Arruda.

Assim, a capela curada foi criada no dia 10 de junho de 1827, denominada de São João Batista do Rio Claro. Em 09 de dezembro de 1930, criou-se a freguesia no atual município de Piracicaba, transferida para o município de Limeira em 08 de março de 1842. Elevada a vila em 07 de março de 1845, recebeu foros de cidade em 30 de abril de 1857. Em 20 de dezembro de 1905 sua denominação foi simplificada para Rio Claro.

No ano de 1876 foi inaugurado o ramal férreo Campinas – Rio Claro, da Companhia Paulista de Vias Férrreas e Fluviais, por onde era transportado o café com destino ao porto de Santos. Foi construída entre 1881 e 1885, uma nova ferrovia, ligando Rio Claro a São Carlos e Araraquara, pela Companhia de Estradas de Ferro do Rio Claro, mais tarde adquirida pela Companhia Paulista, atual FEPASA (IBGE; SEADE, 2013).

Imagem 01. Linha férrea da Ferrovia Paulista S.A. - FEPASA.

1.3. Formação administrativa

Ainda de acordo com Instituto Brasileiro de Geografia e Estatística (IBGE), a formação administrativa ocorreu da seguinte forma, distrito criado com a denominação de São João Batista de Rio Claro, pelo Decreto Imperial, de 09 de dezembro de 1830, subordinado ao município de Piracicaba. Pela Lei nº 25, de 08 de março de 1842, transfere o distrito de São João Batista de Rio Claro do município de Piracicaba para Limeira.

Elevado à categoria de vila com a denominação de São João do Rio Claro, pela Lei provincial nº 13, de 07 de março de 1845, desmembrado dos municípios de Limeira e Mogi Mirim. Constituído do Distrito Sede. Sede na antiga vila de São João Batista de Rio Claro. Pela Lei provincial nº 5, de 05 de julho de 1852, e por Decreto Estadual nº 9, de 08 de janeiro de 1890, é criado distrito de Itirapina e anexado à vila São João Batista de Rio Claro.

Elevado à condição de cidade com a denominação de São João do Rio Claro, pela Lei Provincial nº 44, de 30 de abril de 1857. Pelo Decreto Estadual nº 105, de 17 de dezembro de 1890, é criado o distrito de Anápolis (ex-povoado), e anexado ao município de São João do Rio Claro. Pela Lei Estadual nº 505, de 21 de junho 1897, desmembra de São João do Rio Claro o distrito de Anápolis. Elevado à categoria de município. Pela Lei nº 262, de 30 de abril de 1894, é criado o distrito de Santa Cruz da Boa Vista, pela Lei nº 262, de 30 de abril de 1894, e anexado ao município de Rio Claro.

Pela Lei Estadual nº 884, de 31 de outubro de 1903, é criado o distrito de Iтаqueri da Serra e anexado ao município de Rio Claro. Pela Lei Estadual nº 975, de 20 de dezembro de 1905, o município de São João do Rio Claro tomou a denominação de Rio Claro. Pela Lei nº 1011, de 13 de outubro de 1906, altera a denominação do distrito de Santa Cruz da Boa Vista para Ipojuca.

Em divisão administrativa referente ao ano de 1911, o município é constituído de quatro distritos: Rio Claro (ex-São João do Rio Claro), Ipojuca (ex-Santa Cruz da Boa Vista), Iтаqueri da Serra e Itirapina. Pela Lei Estadual nº 1527, de 27 de dezembro de 1916, é criado o distrito de Santa Gertrudes e anexado ao município de Rio Claro. Pela Lei Estadual nº 1669, de 27 de novembro de 1919, é criado o distrito de Corumbataí e anexado ao município de Rio Claro.

Rio Claro os distritos de Itirapina e Itaqueri da Serra, para constituir o novo município de Itirapina.

Em divisões territoriais datadas de 31 de dezembro de 1936 e 31 de dezembro de 1937, o município é constituído de quatro distritos: Rio Claro, Corumbataí, Ipojuca e Santa Gertrudes. Pelo Decreto Lei Estadual nº 14.334, de 30 de novembro de 1944, o distrito de Ipojuca passou a denominar-se Ipeúna.

No quadro fixado para vigorar no período de 1944-1948, o município é constituído de quatro distritos: Rio Claro, Corumbataí, Ipeúna (ex-Ipojuca) e Santa Gertrudes. Pela Lei Estadual nº 233, de 24 de dezembro de 1948, desmembra do município de Rio Claro os distritos de Corumbataí e Santa Gertrudes, elevando-os à categoria de município. A Lei Estadual acima citada cria os distritos de Ajapi e Assistência, anexando-os ao município de Rio Claro.

Em divisão territorial datada de 01 de julho de 1950, o município é constituído de 4 distritos: Rio Claro, Ajapi, Assistência e Ipeúna ficando nesta divisão territorial até 01 de julho de 1960. Pela Lei Estadual nº 8092, de 28 de fevereiro de 1964, desmembra do município de Rio Claro o distrito de Ipeúna. Elevado à categoria de município. Em divisão territorial datada de 31 de dezembro de 1968, o município então foi constituído de três distritos: Rio Claro, Ajapi e Assistência.

1.4. População

<table>
<thead>
<tr>
<th>Ano</th>
<th>População (hab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>138.243</td>
</tr>
<tr>
<td>1996</td>
<td>152.377</td>
</tr>
<tr>
<td>2000</td>
<td>168.218</td>
</tr>
<tr>
<td>2007</td>
<td>185.421</td>
</tr>
<tr>
<td>2010</td>
<td>186.253</td>
</tr>
</tbody>
</table>

Ainda, segundo o Censo do IBGE (2010) constam mais indivíduos do sexo feminino que masculino, ou seja, 95.566 e 90.687, respectivamente. Composta por uma população jovem, a faixa etária predominante varia de 25 a 29 anos. Para o ano de 2013, de acordo com a Fundação Sistema Estadual de Análise de Dados (SEADE), a população era de 190.849 habitantes, com taxa de crescimento entre os anos de 2010 a 2013, de 0,84%.

1.5. Aspectos socioeconômicos

No cenário socioeconômico de Rio Claro, o setor industrial destaca-se por suas atividades que agregam valores superiores aos bens e serviços consumidos em seu processo, principalmente quando comparados ao valor adicionado do Estado de São Paulo. No ano de 2010, o valor adicionado do município na indústria foi de 44,90%, enquanto do Estado, 29,08% (SEADE, 2010).

No Quadro 01, apresentam-se os valores adicionados por setores de atividades, como agropecuária, indústria e serviços, além de constar o Produto Interno Bruto total – PIB per capita a preços correntes, referentes aos anos 2006 a 2010.
Quadro 01. Valores adicionados por setor de atividades e PIB, entre 2006 e 2010.

<table>
<thead>
<tr>
<th>Período (Anos)</th>
<th>Agropecuária (em milhões de reais)</th>
<th>Indústria (em milhões de reais)</th>
<th>Serviços (em milhões de reais)</th>
<th>Total (em milhões de reais)</th>
<th>Impostos (em milhões de reais)</th>
<th>PIB (2) (em milhões de reais)</th>
<th>PIB per Capita (3) (em reais)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>48,93</td>
<td>1.285,72</td>
<td>293,35</td>
<td>2.870,39</td>
<td>421,40</td>
<td>3.291,79</td>
<td>18.398,93</td>
</tr>
<tr>
<td>2008</td>
<td>35,88</td>
<td>1.592,05</td>
<td>375,54</td>
<td>3.503,66</td>
<td>542,29</td>
<td>4.045</td>
<td>22.179,58</td>
</tr>
<tr>
<td>2009</td>
<td>30,29</td>
<td>1.840,61</td>
<td>424,73</td>
<td>3.976,11</td>
<td>554,76</td>
<td>4.521,87</td>
<td>24.548,05</td>
</tr>
<tr>
<td>2010</td>
<td>52,98</td>
<td>1.956,43</td>
<td>436,53</td>
<td>4.356,97</td>
<td>646,42</td>
<td>5.003,39</td>
<td>26.886,19</td>
</tr>
</tbody>
</table>

(1) Inclui o VA da Administração Pública.
(2) O PIB do Município é estimado somando os impostos ao VA total.
(3) O PIB per capita foi recalculado utilizando a população estimada pela Fundação SEADE.

Todos os setores apresentaram aumento de rendimento no período analisado, sendo o setor agropecuário com menor representatividade, além de uma queda obtida entre os anos de 2006 e 2007, que no ano seguinte recuperou-se. A indústria, como atividade relevante apresentou valor adicionado (em milhões de reais) de 1.956,43, ano de 2010, apenas pouco abaixo do valor expresso para o setor de serviços. De modo a oferecer um contraponto para o indicador do Produto Interno Bruto – PIB per capita, que foi R$26.886,19 (SEADE, 2010).

Indicando a dimensão econômica de desenvolvimento do município, tem-se o Índice de Desenvolvimento Humano Municipal – IDHM. Este envolve três aspectos, que são longevidade, educação e renda; os valores variam de 0 a 1, observando que quanto mais próximo de 1, maior o desenvolvimento humano.

Assim, no ano de 1991, o IDHM foi de 0,611, em 2000 de 0,734 e no ano de 2010 apresentou um valor de 0,803. Os valores evoluíram com os anos, de modo que considerando este último valor, o município se encontra na faixa denominada de “muito alto” (IBGE: Atlas Brasil 2013 - Programa das Nações Unidas para o Desenvolvimento).

A renda per capita no ano de 2010 foi de R$840,39; sendo que as atividades industriais contam ainda com a maior participação de empregos formais com 38,2%, seguida pelos de serviço com 37,2%. Na Tabela 02, os rendimentos médios dos empregos formais encontram-se apresentados, prevalecendo os maiores valores na indústria.

<table>
<thead>
<tr>
<th>Rendimento médio de empregos formais</th>
<th>Renda per capita (R$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultura, pecuária, produção florestal, pesca e aquicultura</td>
<td>1.524,50</td>
</tr>
<tr>
<td>Indústria</td>
<td>2.043,34</td>
</tr>
<tr>
<td>Construção</td>
<td>1.560,42</td>
</tr>
<tr>
<td>Comércio atacadista e varejista e reparação de veículos automotores</td>
<td>1.246,76</td>
</tr>
<tr>
<td>Rendimento médio do total de empregos formais</td>
<td>1.781,13</td>
</tr>
</tbody>
</table>

Fonte: SEADE, 2011.

O último levantamento censitário das Unidades de Produção Agropecuária – UPAs – do Estado de São Paulo ocorreu no período 2007/2008, onde se apresentam as estatísticas agrícolas, explorações animais, áreas cultivadas e outros dados estatísticos.

A estrutura fundiária de Rio Claro pode ser visualizada na Tabela 03, em que há um total de 990 UPAs (Unidade de Produção Agropecuária), sendo as áreas com 20 a 50ha e as áreas com 10 a 20ha, as que possuem mais unidades, com 306 e 241 UPAs, respectivamente. A área total é de 37.027,4ha, predominando as UPAs com 20 a 50ha e 500 a 5.000ha.

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Nº UPAs</th>
<th>Área total (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área das UPAs com 0 – 1ha</td>
<td>18</td>
<td>12,4</td>
</tr>
<tr>
<td>Área das UPAs com 1 – 2ha</td>
<td>24</td>
<td>40,1</td>
</tr>
<tr>
<td>Área das UPAS com 2 – 5ha</td>
<td>122</td>
<td>427,7</td>
</tr>
<tr>
<td>Área das UPAs com 5 – 10ha</td>
<td>163</td>
<td>1.274,4</td>
</tr>
<tr>
<td>Área das UPAs com 10 – 20ha</td>
<td>241</td>
<td>3.550,8</td>
</tr>
<tr>
<td>Área das UPAs com 20 – 50ha</td>
<td>306</td>
<td>9.756,7</td>
</tr>
<tr>
<td>Área das UPAS com 50 – 100ha</td>
<td>74</td>
<td>5.120,7</td>
</tr>
<tr>
<td>Área das UPAs com 100 – 200ha</td>
<td>28</td>
<td>4.041,2</td>
</tr>
<tr>
<td>Área das UPAs com 200 – 500ha</td>
<td>09</td>
<td>2.950,3</td>
</tr>
<tr>
<td>Área das UPAs com 500 – 5.000ha</td>
<td>05</td>
<td>9.853,1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>990</td>
<td>37.027,4</td>
</tr>
</tbody>
</table>

A ocupação do solo no município referente à área é predominantemente de culturas temporárias, seguidas de pastagens, com 15.854ha e 9.370ha, respectivamente (Tabela 04). Em menor quantia esta a vegetação de brejo e várzea, ocupando 0,25% da área total; enquanto as áreas de reflorestamento são de 3.528ha e ocupam cerca de 244 UPAs.

Tabela 04. Ocupação do solo no município de Rio Claro, 2007/2008.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Nº UPAs</th>
<th>Área (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultura perene</td>
<td>127</td>
<td>2.658,2</td>
<td>7,18</td>
</tr>
<tr>
<td>Cultura temporária</td>
<td>544</td>
<td>15.854,0</td>
<td>42,81</td>
</tr>
<tr>
<td>Pastagens</td>
<td>660</td>
<td>9.370,0</td>
<td>25,30</td>
</tr>
<tr>
<td>Reflorestamento</td>
<td>244</td>
<td>3.528,0</td>
<td>9,53</td>
</tr>
<tr>
<td>Vegetação natural</td>
<td>481</td>
<td>2.502,4</td>
<td>6,76</td>
</tr>
<tr>
<td>Vegetação de brejo e várzea</td>
<td>74</td>
<td>93,0</td>
<td>0,25</td>
</tr>
<tr>
<td>Área em descanso</td>
<td>328</td>
<td>1.453,5</td>
<td>3,93</td>
</tr>
<tr>
<td>Área complementar</td>
<td>697</td>
<td>1.568,3</td>
<td>4,24</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3155</td>
<td>37.027,4</td>
<td>100%</td>
</tr>
</tbody>
</table>

A Tabela 05 apresenta as principais atividades nas áreas cultivadas e as principais explorações pecuárias, sendo a cana-de-açúcar a atividade mais explorada, em 14.114ha. A bovinocultura de corte, leiteira e mista também são bem explorada, juntamente com a equinocultura e avicultura de corte, no que condiz às unidades de produção.

Tabela 05. Principais atividades agropecuárias do município de Rio Claro, 2007/2008.

<table>
<thead>
<tr>
<th>Área cultivada</th>
<th>Área (ha)</th>
<th>Nº UPAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cana-de-açúcar</td>
<td>14.114,0</td>
<td>451</td>
</tr>
<tr>
<td>Braquiária</td>
<td>8.138,8</td>
<td>553</td>
</tr>
<tr>
<td>Eucalipto</td>
<td>3.040,9</td>
<td>243</td>
</tr>
<tr>
<td>Laranja</td>
<td>2.023,0</td>
<td>78</td>
</tr>
<tr>
<td>Milho</td>
<td>1.356,7</td>
<td>89</td>
</tr>
<tr>
<td>Gramas</td>
<td>514,1</td>
<td>44</td>
</tr>
</tbody>
</table>
Outras gramineas para pastagens

<table>
<thead>
<tr>
<th>Gramínea</th>
<th>N° (unidades)</th>
<th>Nº UPAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus</td>
<td>481,1</td>
<td>02</td>
</tr>
<tr>
<td>Seringueira</td>
<td>223,1</td>
<td>01</td>
</tr>
<tr>
<td>Feijão</td>
<td>155,0</td>
<td>12</td>
</tr>
</tbody>
</table>

Principais Explorações Pecuárias

<table>
<thead>
<tr>
<th>Exploração Pecuária</th>
<th>Nº (unidades)</th>
<th>Nº UPAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovinocultura de corte</td>
<td>1.676,0 (cabeças)</td>
<td>60</td>
</tr>
<tr>
<td>Bovinocultura de leite</td>
<td>1.338,0 (cabeças)</td>
<td>52</td>
</tr>
<tr>
<td>Bovinocultura mista</td>
<td>6.360,0 (cabeças)</td>
<td>195</td>
</tr>
<tr>
<td>Apicultura</td>
<td>65,0 (colmeias)</td>
<td>02</td>
</tr>
<tr>
<td>Asininos e muares</td>
<td>12,0 (cabeças)</td>
<td>08</td>
</tr>
<tr>
<td>Avicultura de corte</td>
<td>754.338,0 (cab./ano)</td>
<td>29</td>
</tr>
<tr>
<td>Avicultura ornamental/decorativa/exótica</td>
<td>215,0 (cabeças)</td>
<td>03</td>
</tr>
<tr>
<td>Avicultura para ovos</td>
<td>106.290,0 (cabeças)</td>
<td>53</td>
</tr>
<tr>
<td>Caprinocultura</td>
<td>24,0 (cabeças)</td>
<td>02</td>
</tr>
<tr>
<td>Codornicultura</td>
<td>7.200,0 (cabeças)</td>
<td>01</td>
</tr>
<tr>
<td>Cunicultura</td>
<td>3,0 (cabeças)</td>
<td>01</td>
</tr>
<tr>
<td>Equinocultura</td>
<td>498,0 (cabeças)</td>
<td>125</td>
</tr>
<tr>
<td>Javalis</td>
<td>30,0 (cabeças)</td>
<td>01</td>
</tr>
<tr>
<td>Ovinocultura</td>
<td>180,0 (cabeças)</td>
<td>10</td>
</tr>
<tr>
<td>Pisciculturas, área de tanques</td>
<td>53.032,0 (m²)</td>
<td>05</td>
</tr>
<tr>
<td>Suinocultura</td>
<td>1.003,0 (cabeças)</td>
<td>50</td>
</tr>
</tbody>
</table>

1.6. Aspectos físicos

O ambiente natural sofre influências constantes, desde os tempos antigos aos atuais, sendo alguns dos diversos fatores interferentes nos processos bióticos e abióticos como: clima da região, hidrografia, pedologia, geologia, geomorfologia, declividade e hipsometria. Além destes, a cobertura vegetal, o uso e ocupação do solo, a situação atual das Áreas de Preservação Permanente - APPs e a mata ciliar também intervêm neste sistema.
Em linhas gerais estes aspectos serão abordados neste capítulo, de forma a registrar os elementos pré-existentes no município e que estão disponíveis em fontes primárias e secundárias de dados.

1.6.1. Clima

De acordo com a classificação climática de Köppen, o tipo Cwa abrange o município de Rio Claro, caracterizado como clima tropical de altitude, com chuva no verão e seca no inverno, e temperatura média do mês mais quente superior a 22ºC (CEPAGRI, 2013).

No Quadro seguinte encontram-se as temperaturas mínima, média e máxima, além das precipitações referentes a cada mês durante o ano de 2012.

Quadro 02. Dados de temperatura e precipitação do município de Rio Claro.

<table>
<thead>
<tr>
<th>MÊS</th>
<th>TEMPERATURA DO AR (C)</th>
<th>CHUVA (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínima média</td>
<td>Máxima média</td>
</tr>
<tr>
<td>Jan</td>
<td>18.5</td>
<td>29.8</td>
</tr>
<tr>
<td>Fev</td>
<td>18.7</td>
<td>29.9</td>
</tr>
<tr>
<td>Mar</td>
<td>18.0</td>
<td>29.5</td>
</tr>
<tr>
<td>Abr</td>
<td>15.4</td>
<td>27.9</td>
</tr>
<tr>
<td>Mai</td>
<td>12.7</td>
<td>26.0</td>
</tr>
<tr>
<td>Jun</td>
<td>11.2</td>
<td>24.9</td>
</tr>
<tr>
<td>Jul</td>
<td>10.7</td>
<td>25.1</td>
</tr>
<tr>
<td>Ago</td>
<td>12.1</td>
<td>27.3</td>
</tr>
<tr>
<td>Set</td>
<td>14.1</td>
<td>28.3</td>
</tr>
<tr>
<td>Out</td>
<td>15.8</td>
<td>28.8</td>
</tr>
<tr>
<td>Nov</td>
<td>16.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Dez</td>
<td>17.9</td>
<td>29.1</td>
</tr>
<tr>
<td>Ano</td>
<td>15.1</td>
<td>28.0</td>
</tr>
<tr>
<td>Mín</td>
<td>10.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Máx</td>
<td>18.7</td>
<td>29.9</td>
</tr>
</tbody>
</table>

Fonte: CEPAGRI, 2013.
1.6.2. Hidrografia

Rio Claro pertence ao Comitê de Bacia Piracicaba/Capivari/Jundiaí ou UGRHI 05 - Unidade de Gerenciamento dos Recursos Hídricos, que compreende uma área de abrangência de 15.303,67km². Precisamente, o município está inserido na bacia hidrográfica do Rio Corumbataí.

Esta bacia hidrográfica (Figura 02) ocupa uma área total de 171.050ha, abrangendo parte dos municípios de Analândia, Itirapina, Corumbataí, Santa Gertrudes, Ipeúna, Charqueada e Piracicaba, sendo afluente deste último. Seus principais afluentes são: à margem direita o Rio Passa Cinco, que nasce no município de Itirapina; e à margem esquerda o Ribeirão Claro.

Figura 02. Localização da Bacia Hidrográfica do Rio Corumbataí com os municípios abrangentes.

Fonte: Projeto SOS Corumbataí, 2006.
O Rio Corumbataí (Imagem 02), principal manancial e mais importante rio da região, referente à sua qualidade de água, se enquadra em diversos trechos na Classe 1, águas que podem dentre algumas das atividades nobres, ser destinadas ao abastecimento para consumo humano, após desinfecção.

Contudo, as atividades extrativistas, agrícolas e industriais têm contribuído para sérios comprometimentos de sua qualidade, onde em alguns pontos nos trechos entre Rio Claro e a sua foz no Rio Piracicaba, enquadra-se na Classe 4, águas que podem ser utilizadas para fins menos nobres, como a navegação e harmonia paisagística (Projeto SOS Corumbataí, 2006).

Imagem 02. Rio Corumbataí em Rio Claro.

Abastecendo a cidade de Rio Claro, responsável por cerca de 40% da captação municipal, o Ribeirão Claro (Imagem 03) nasce no município de Corumbataí. Os afluentes deste são os Córregos Cachoeirinha, Mãe Preta e Lavapés, além dos Córregos Ibitinga e Santo Antônio, que deságuam no Ribeirão na área da Floresta Estadual "Edmundo Navarro de Andrade" (antigo Horto Florestal).
Imagem 03. Ponte sobre o Ribeirão Claro, na Floresta Estadual "Edmundo Navarro de Andrade".

Segundo Relatório do Instituto de Pesquisas Tecnológicas - IPT (2012), apenas no distrito de Assistência há captação realizada por meio de poço (Quadro 03). Entretanto, o uso para abastecimento das águas subterrâneas é questionável, pois perfurações realizadas dentro do perímetro urbano apresentaram elevada presença de flúor na água, indicando qualidade inadequada para o consumo. Além disso, o substrato geológico da região constitui-se de aquicludes, correspondentes a unidades com baixa capacidade de produção de água.
Quadro 03. Situação do abastecimento de água em Rio Claro - SP, ano 2012.

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Superficial > 95%</th>
<th>Subterrânea < 5%</th>
</tr>
</thead>
</table>
| **Situação** | - Rio Corumbataí 60%
| | - Ribeirão Claro 40%
| | As duas captações abastecem as duas Estações de Tratamento de Água - ETA | - Atende ao Distrito de Assistência
| | | - Vazão limitada |
| **Interferências e conflitos** | - Mineração de areia na cabeceira do Rio Corumbataí
| | - Desmatamento da mata ciliar | - |
| **Impactos potenciais** | - Quantidade e qualidade das águas
| | - Erosão e assoreamento dos mananciais | - |

Fonte: Adaptado de IPT (2012).

1.6.3. Geologia

O município de Rio Claro localiza-se na parte nordeste da Província Paraná, contudo não apresenta todas as rochas constituintes desta unidade geotectônica. Uma das bacias que compõe a Província, Bacia do Paraná, está representada pela super sequência Gondwana I (Carbonífera – Eotriássica), constituida por rochas do Grupo Itararé, Formação Tatuí, Irati e Corumbataí. Na super sequência Gondwana II (Triássico Médio a Superior), encerra-se a sedimentação na Bacia do Paraná, representada pela Formação Pirambóia (PUPIM, 2010).

Tais sequências sedimentares encontram-se ainda, encobertas por depósitos da Formação Rio Claro e depósitos quaternários, colúvios eluvionares e aluvionares (Figura 03).
Figura 03. Estratigrafia local da Bacia do Paraná no município de Rio Claro - SP.

Segundo o Centro de Análise e Planejamento Ambiental - CEAPLA (2010), uma relevante estrutura geológica regional ocorre na área do município, denominada Domo de Pitanga, um alto estrutural do Mesozóico, topograficamente rebaixado pela drenagem da bacia do Rio Corumbataí, que promove o aparecimento de rochas paleozóicas na base da coluna estratigráfica da Bacia Sedimentar do Paraná, em meio à faixa de afloramento da Formação Corumbataí.

1.6.4. Geomorfologia

As Províncias de Depressão Periférica, zona do Médio Tietê e Cuestas Basálticas compõem o contexto geomorfológico de Rio Claro. Esta primeira unidade ocupa áreas altimetricamente entre 500 a 650 metros, com predominios de colinas de topo amplo, tabulares e convexos, declividades baixa a moderada e densa rede de drenagem (ROSS & MOROZ, 1997).
Segundo estudo de Penteado (1976; IPT 1981 *apud* Oliva, 2006), as colinas tabuliformes de vertente suavemente convexa e patamares de fraca inclinação, dispostos entre 550 e 650 metros, é o sistema de relevo predominante no município. Além de morros testemunhos isolados, colinas médias e morrotes alongados paralelos, sendo que tais colinas descem em direção aos vales principais, constituindo níveis erosivos quaternários.

1.6.5. Mineração

A região de Rio Claro enquadra-se em uma das mais importantes regiões de mineração do Estado de São Paulo. Conforme consta no Cadastro Mineiro do Departamento Nacional de Produção Mineral – DNPM, as atividades em Rio Claro iniciaram-se no ano de 1968, sendo a atividade de extração mais antiga, a da argila (Imagem 04). Além desta, há um grande potencial mineral de substâncias utilizadas diretamente na construção civil e indústria, como areia, pedra britada e calcário (CEAPLA, 2010).

![Imagem 04. Área de mineração.](image)

A atividade é vista como altamente impactante ao meio ambiente e não sustentável, por se tratar da extração de recursos naturais não renováveis. Em contrapartida, a mineração é essencial para a economia e desenvolvimento, pois é a base da sociedade industrial moderna (PDCER TATUÍ, 2011).

De acordo com o Ministério de Minas e Energia, a mineração foi essencial para o desenvolvimento do país, de forma a criar demandas por infraestrutura e serviços, induzindo...
a instalação de indústrias de transformação e de bens de capital, além da geração de empregos, rendas e interiorização da população.

Deste modo, a atividade de extração teve amplo desenvolvimento na década de 90, quando novas indústrias do setor cerâmico chegaram à região, sendo as de maior ênfase as indústrias de piso e revestimento, tornando a região um Polo Cerâmico Nacional, denominado como Polo Cerâmico de Santa Gertrudes.

Os processos mineiros de argila ganharam destaque, uma vez que seu aproveitamento refere-se ao uso imediato na construção civil, incluindo a fabricação de cerâmicas vermelhas e a indústria de transformação. Agregado a uma maior produtividade, estão presentes, os impactos ambientais que se tornaram uma preocupação, pois tal atividade possibilita: a alteração das formas de relevo; a vulnerabilidade do solo com potencial de sua perda e contaminação; o assoreamento e a contaminação das águas superficiais e subterrâneas; e a emissão de gases e materiais particulados.

Além desses impactos, outros aspectos também são frequentes no contexto ambiental como:

- As empresas nem sempre tem conhecimento adequado da jazida, ou fazem um planejamento de lavra que conduza ao aproveitamento máximo do recurso mineral, não levando em consideração a necessidade de recomposição destas áreas;

- Principalmente nas pequenas empresas, é grande a clandestinidade, associada à falta ou a deficiências no licenciamento ambiental;

- O acesso às tecnologias modernas no controle e reabilitação ambiental é restrito;

- Em termos unitários, geram impactos ambientais pontuais sobre a paisagem, ecossistemas e população. Entretanto, em se tratando de um conjunto de pequenas minas, os impactos gerados podem apresentar dimensões relevantes.

Em algumas áreas do município, nota-se a preocupação com a recuperação ambiental das jazidas. Entretanto, em outras (Imagem 05) existe o abandono após o fim da atividade, o que acarreta a degradação da paisagem, a erosão do solo com o consequente assoreamento de córregos e nascentes, contaminação das águas, bem como o risco a animais e seres humanos constituindo-se como um dos maiores problemas ambientais.
Imagem 05. Impactos causados pela atividade minerária.

Contudo, para estas atividades, existe o Código de Mineração, Decreto Lei nº 227, de 28 de fevereiro de 1967, que dá nova redação ao Decreto Lei nº 1985, de 29 de janeiro de 1940. Recentemente, a Secretaria de Geologia Mineração e Transformação Mineral do Ministério de Minas e Energia (SGM/MME) esta elaborando o Novo Marco Regulatório da Mineração, que tem por finalidade fortalecer a ação do estado, estimular a maximização do aproveitamento de jazidas, o controle ambiental e atrair investimentos para o setor.

1.6.6. Áreas contaminadas segundo órgão competente

De acordo com a relação de Áreas Contaminadas e Reabilitadas no Estado de São Paulo disponibilizado pela Companhia Ambiental do Estado de São Paulo – CETESB (2012), em Rio Claro, além da contaminação recorrente dos postos de combustíveis impactando o solo, subsolo e consequentemente as águas subterrâneas, existem ainda, a contaminação do solo superficial, subsolo, águas subterrâneas e sedimentos pelas indústrias e setor minerário.
1.7. Aspectos bióticos

1.7.1. Vegetação

A Lei nº 9.985, de 18 de julho de 2000, instituiu o Sistema Nacional de Unidades de Conservação da Natureza – SNUC, estabelecendo os critérios e normas para a criação, implantação e gestão das unidades de conservação. Em seu Art. 7º, as unidades pertencentes ao SNUC são divididas em dois grupos com características específicas: as Unidades de Proteção Integral, que tem por objetivo preservar a natureza, admitindo-se apenas o uso indireto dos seus recursos naturais; e as Unidades de Uso Sustentável, que possuem o objetivo de compatibilizar a conservação da natureza com o uso sustentável de parcela dos seus recursos naturais.

A cidade de Rio Claro possui uma importante Unidade de Conservação de Uso Sustentável, a Floresta Estadual “Edmundo Navarro de Andrade” - FEENA que compreende uma área de 2.231ha, sendo considerado o berço do Eucalipto no Brasil, possuindo ainda uma das maiores variedades de espécies do gênero *Eucalyptus*, além de um belíssimo patrimônio histórico e cultural (Imagens 06 e 07).

A FEENA advém do Horto Florestal "Navarro de Andrade", instituída no ano de 1909, pela antiga Companhia Paulista de Estradas de Ferro posteriormente, transformada na FEPASA. A partir de 1998, pela Resolução SMA 87, o Horto passou a compor o patrimônio administrado pela Secretaria de Estado do Meio Ambiente; e em junho de 2002 através do Decreto nº 46.819, de 11 de junho de 2002 foi convertido à categoria de Floresta Estadual (FUNDAÇÃO FLORESTAL, 2005).
Imagem 06. Entrada da Floresta Estadual “Edmundo Navarro de Andrade”.

Imagem 07. Floresta Estadual “Edmundo Navarro de Andrade”.

Conforme Inventário Florestal do Estado de São Paulo, em Rio Claro (Figura 04), 1.929ha do território é ocupado pela vegetação natural, representando 3,7% da área total municipal. Desta vegetação, 196,47ha são de mata; 1.686,73ha de capoeira; 30,93ha compostos por vegetação de várzea; e 15,06ha por vegetação não classificada; como área de reflorestamento equivalente a 3.805,19ha.

Quanto à vegetação natural remanescente, 4.682ha são de Floresta Estacional Semidecidual e 332ha de formação arbórea/arbustiva em região de várzea, resultando um total de 5.014ha, cerca de 10,1% da área total do município (INSTITUTO FLORESTAL, 2009).
Figura 04. Mapa Florestal do município de Rio Claro - SP.

Fonte: Instituto Florestal, 2009.

Algumas formações de mata no município estão situadas em imóveis particulares, como na Fazenda São José, que possui uma área de 580ha de mata, seccionada em três fragmentos, situados nas proximidades da FEENA e a mata da Fazenda Santa Gertrudes (FUNDAÇÃO FLORESTAL, 2005).

A área urbana da cidade encontra-se arborizada, com árvores de grande porte e de valor taxonômico, como pode ser visualizado na Imagem 08. No norte da cidade de Rio Claro, ainda há o Lago Azul (Imagens 09 e 10), uma área aproximada de 130.000m², de utilidade pública para fins paisagísticos e desenvolvimento de turismo, sendo o lago um ponto de atração, ocupando uma área de 35.600m² (PREFEITURA MUNICIPAL DE RIO CLARO, 2013).

Imagem 08. Árvores de grande porte e de valor taxonômico na área urbana de Rio Claro.

Imagem 09. Fauna presente no Parque Lago Azul.

Imagem 10. Parque Lago Azul.

1.7.2. Fauna

O maior patrimônio de biodiversidade do mundo encontra-se no Brasil, com mais de 100 mil espécies de invertebrados e aproximadamente 8.200 espécies de vertebrados, os quais: 713 mamíferos, 1.826 aves, 721 répteis, 875 anfíbios, 2.800 peixes continentais e 1.300 peixes marinhos. Destes, 627 estão listadas como ameaçadas de extinção (ICMBio, 2013).

Assim, a Lei nº 5.197, de 03 de janeiro de 1967, que dispõe sobre a proteção à fauna e dá outras providências, em seu Art. 1º já considerava:

Art. 1º. Os animais de quaisquer espécies, em qualquer fase do seu desenvolvimento e que vivem naturalmente fora do cârteiro, constituindo a fauna silvestre, bem como seus ninhos, abrigos e criadouros naturais são propriedades do Estado, sendo proibida a sua utilização, perseguição, destruição, caça ou apanha.

Os estudos existentes da fauna na região de Rio Claro abrangem grande variedade de espécies, contudo uma relação completa dos animais presentes torna-se complexa, além de não ser o foco central deste estudo. Dessa forma, apenas serão apresentados os levantamentos encontrados nas áreas da Floresta Estadual "Edmundo Navarro de Andrade" e da Bacia do Rio Corumbataí, os quais estão referenciados a seguir.

Nos estudos realizados acerca da Bacia do Rio Corumbataí (ATLAS AMBIENTAL, 2010), que abrange a região de Rio Claro, o levantamento da mastofauna revelou-se com uma rica variação de espécies, apesar da restrita área de vegetação natural. Dentre os animais encontrados estão: gambá, guaiquica-cinza, mão-pelada, quati, sucurana, gato mourisco, gato-do-mato, jaguatirica, cachorro-do-mato, lobo-guará, furão, irara, lontra, macaco prego, sagüi, serelepe, capivara, rato-do-mato, rato-do-arroz, rato-do-chão, ouriço-
cacheiro, pacca, cotia, preá, veado, tatu-galinha, tatu-de-rabo-mole, tatupeba, tamanduá-mirim e tapiti.

Também nessa Bacia foram encontradas 48 espécies de peixes agrupadas em 14 famílias, das quais três espécies são alóctones, e as demais são consideradas como nativas. Verificaram-se também 15 espécies de anuros de três famílias distintas; e cerca de 105 espécies de aves.

1.8. Gestão ambiental

Imagen 11. Prédio da Secretaria Municipal de Planejamento, Desenvolvimento e Meio Ambiente.

De acordo com a Prefeitura, dentre as funções da Secretaria, tem-se: formular e executar políticas públicas que visem o desenvolvimento urbano, econômico e social do município, o ordenamento urbanístico, a gestão física territorial, a preservação do meio ambiente e ações que visem à ampliação das condições de qualidade de vida e a estruturação da cidade.

Visa ainda, a orientação e organização da paisagem urbana, o cumprimento e atualizações das Leis do Plano Diretor, o Uso e Ocupação do Solo, o Parcelamento do Solo, o Zoneamento Urbano e o Licenciamento Ambiental, bem como o acompanhamento e a disciplina das atividades comerciais e industriais do município e também a fiscalização e a orientação do zoneamento minerário e hídrico.

O Departamento Autônomo de Água e Esgoto de Rio Claro – DAAE foi criado através da Lei nº 1.144, de 05 de dezembro de 1969, como uma entidade autárquica e independente. Contudo, anteriormente já havia serviços de atendimento de água e esgoto no município.
Capítulo III - Levantamento Cartográfico
1. LEVANTAMENTO CARTOGRÁFICO BÁSICO

A realização do Diagnóstico Ambiental e do Desenvolvimento de Projetos de Recuperação dos Corpos D’Água de Rio Claro está pautada na Anotação de Responsabilidade Técnica - ART, de número 92221220130973073, obtida junto ao Conselho Regional de Engenharia e Agronomia do Estado de São Paulo - CREA/SP, com data de emissão de 26 de julho de 2013.

O procedimento utilizado na elaboração dos mapas consistiu na técnica de compilação, providenciado pelo georreferenciamento e vetorização das vertentes, executadas em ambiente digital - software ArcGIS 10.2. O Datum empregado foi o SIRGAS 2000, com projeção UTM, tendo o meridiano central 45, fuso 23.

Os produtos do levantamento cartográfico básico consistiram na elaboração dos mapas de altimetria, geologia, geomorfologia, hipsométria, declividade e pedologia (Figura 01) adotando como referência as demarcações providenciadas no mapa base do município.

Figura 01. Detalhe da produção cartográfica básica.
Para a confecção do Mapa Base do Município de Rio Claro (Apêndice A) foram utilizadas as seguintes cartas topográficas digitalizadas do IBGE, folhas:

- Araras SF-23-Y-A-II-3;
- Corumbataí SF-23-Y-A-I-2;
• Itirapina SF-23-Y-A-I-3;
• Leme SF-23-Y-A-II-1;
• Piracicaba SF-23-Y-A-IV-2;

A produção cartográfica também contemplou os levantamentos de campo realizados por sensoriamento remoto - receptor GPS de navegação Garmin - modelo Montana, o que possibilitou a obtenção de fotos georreferenciadas, assim como do limite municipal, obtido do IBGE; da litologia, geomorfologia e relevo do Serviço Geológico do Brasil – CPRM e do Mapa Pedológico – IAC/EMBRAPA.

As imagens aéreas disponibilizadas pela SEPLADEMA, também foram consultadas durante o processo, cuja informação técnicas de referência são:
• Base cartográfica digital georreferenciada através de aerofotogrametria na escala 1:2000 e ortofotos na escala 1:2000 para 100km² compreendendo a área urbana;
• Base cartográfica digital georreferenciada através de aerofotogrametria na escala 1:5000 e ortofotos na escala 1:5000 para 499km² compreendendo a área urbana e rural.

Posteriormente foi gerado um mosaico georreferenciado com as imagens aéreas do município, tendo como finalidade estabelecer uma escala e uma orientação espacial providenciando uma visibilidade completa da área em estudo. Além disso, seu uso combinado ou sobreposto é fundamental na interpretação dos resultados.

A implementação dessas técnicas torna-se essencial para elaboração do SIG, bem como instrumento de busca e consulta em dados mensuráveis, de modo que monitoramento e gerenciamento da área possam ser realizados com maior detalhe, precisão e rigor.

O mosaico do município foi gerado a partir das imagens de satélites obtidas por intermédio do software Open Layers plugin for QGIS (Google Satelite e Bing Aerial) e Modelo Digital de Terreno – TOPODATA, com o qual foram obtidos o relevo sombreado, a declividade, as curvas de nível e todo o modelo hidrológico, ou seja, as direções de fluxo e o fluxo acumulado (Representação na Figura 02, e produção cartográfica Apêndice B).

Os mapas de altimetria, hipsometria e declividade foram criados a partir dos elementos provenientes do Modelo Digital de Terreno (MDT), obtido dos dados numéricos do projeto TOPODATA, conforme metodologia preconizada por Valeriano (2014). Na sequência o texto esboça uma representação esquemática didática do processo (Figura 03).
Um MDT pode ser definido com a representação matemática de uma superfície através das coordenadas X, Y e Z. Atualmente, esta expressão traduz, não apenas a feição altimétrica de uma região, mas qualquer outra característica do terreno a ser representada de forma contínua, como por exemplo: temperatura, vegetação, hidrologia, geologia, poluição, tipo de solo, e outras.

O tipo de MDT mais conhecido é o Modelo Digital de Elevação (DEM), um caso particular do anterior, em que a variável representada é a elevação do terreno em relação a um determinado sistema de referência (MEDINA, 2014).

Para geração dos mapas temáticos a partir do DEM, os dados obtidos no formato geotiff foram processados com o software de geoprocessamento QGIS 2.2.0 usando as “Ferramentas GDAL” disponíveis no Módulo QGIS Core.
1.1. Altimetria

A altimetria é parte da topografia que trata dos métodos e procedimentos empregados no estudo e na representação do relevo do solo. O estudo do relevo no terreno consiste na determinação das alturas e de seus pontos característicos e definidores da altimetria, relacionados com uma superfície de nível que se torna o elemento de comparação (IBGE, 1999).

Na altimetria, emprega-se então, as curvas de nível na representação do relevo devendo ser consideradas algumas propriedades essenciais como: toda curva de nível fecha-se sobre si mesma, dentro ou fora dos limites do papel; duas curvas de nível jamais se cruzarão; várias curvas de nível podem chegar a ser tangentes entre si (no caso do terreno em rocha viva); uma curva de nível não pode bifurcar-se; terrenos planos apresentam curvas de nível mais espaçadas; em terrenos acidentados as curvas de nível encontram-se mais próximas uma das outras.

No presente estudo, o levantamento foi efetuado a partir dos dados TOPODATA (VALERIANO, 2014), processados utilizando-se a ferramenta “Contorno”, parte integrante do pacote “Ferramentas GDAL” disponíveis no Módulo QGIS Core (QGIS 2.2.0). O intervalo entre as linhas de contorno foi definido como 20 metros.

Desta forma, constatou-se que as cotas altimétricas variaram de 500 a 850 metros de altitude em relação ao nível do mar. Em destaque, a maior cota altimétrica está geograficamente localizada na porção oeste, divisa com os municípios de Itirapina e Ipeúna. Detalhes no Apêndice C.

Vale ressaltar que o estudo altimétrico contribui para o conhecimento das modificações da crosta terrestre ao longo do tempo pela ação contínua de agentes externos como, por exemplo, a erosão que propicia o transporte e a sedimentação de materiais. Além disso, destacam-se os cursos d'água como principal agente externo modificador do meio.

Em relação às erosões, outros fatores entrevêem diretamente na instalação das feições: os climáticos e biológicos. Dentre os fatores climáticos apresentam-se as correntes de águas superficiais e subterrâneas, o mar, o frío intenso em algumas regiões do planeta, o vento que transporta as partículas arenosas. Já os fatores biológicos são capazes de modificar o aspecto da superfície terrestre e neles está a ação do homem - ação antrópica, assim como, das plantas e animais.
1.2. Geologia

A área de estudo localiza-se, geologicamente, no setor paulista do flanco nordeste da Bacia Sedimentar do Paraná, representada por rochas sedimentares e vulcânicas das eras Paleozóica (Subgrupo Itararé; Formações Tatuí, Irati e Corumbataí), Mesozóica (Formações Pirambóia, Botucatu e Serra Geral) e Cenozóica (Formação Rio Claro e depósitos recentes).

O mapeamento da área foi gerado com auxílio dos dados vetoriais disponibilizados para o Estado de São Paulo pelo Serviço Geológico do Brasil (CPRM, 2010), no formato shapefile, escala 1:750.000 e são apresentados no Apêndice D - Mapa Geológico do município de Rio Claro.

Em suma, o município é formado por nove unidades litoestratigráficas, sendo a de maior predominância a Formação Corumbataí (45%), seguida das unidades Rio Claro (21%) e da Formação Pirambóia (14%). Outras formações rochosas somadas representam aproximadamente 18% da área. A Tabela 01 traz o detalhamento das áreas em valores absolutos e relativos.

Tabela 01. Ocupação de cada unidade litoestratigráfica em Rio Claro.

<table>
<thead>
<tr>
<th>Unidades</th>
<th>Área</th>
<th>Valores absolutos (ha)</th>
<th>Valores relativos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo Itararé</td>
<td></td>
<td>13,77</td>
<td>2,71</td>
</tr>
<tr>
<td>Formação Pirambóia</td>
<td></td>
<td>65,38</td>
<td>14,68</td>
</tr>
<tr>
<td>Formação Tatuí</td>
<td></td>
<td>16,91</td>
<td>3,31</td>
</tr>
<tr>
<td>Formação Serra Geral</td>
<td></td>
<td>9,84</td>
<td>1,95</td>
</tr>
<tr>
<td>Formação Irati</td>
<td></td>
<td>17,78</td>
<td>3,49</td>
</tr>
<tr>
<td>Formação Corumbataí</td>
<td></td>
<td>228,41</td>
<td>45,33</td>
</tr>
<tr>
<td>Formação Rio Claro</td>
<td></td>
<td>110,26</td>
<td>21,5</td>
</tr>
<tr>
<td>Depósitos Colúvio-Eluvionares</td>
<td></td>
<td>12,68</td>
<td>4,56</td>
</tr>
<tr>
<td>Depósitos Aluvionares</td>
<td></td>
<td>23,40</td>
<td>2,47</td>
</tr>
</tbody>
</table>

Além disso, a Imagem 01 ilustra o processo de modificação das rochas ao longo do tempo, apontando para um perfil de solo com características variadas e presença de minerais (especialmente óxido de ferro), matéria orgânica, hematita e goethita.
Imagem 01. Exemplo de rochas modificadas no município de Rio Claro.

As unidades litoestratigráficas presentes no município, que ocorrem no vale do Rio Corumbataí são descritas a seguir, em ordem estratigráfica, de acordo com o Serviço Geológico do Brasil - CPRM (2013):

- **Grupo Itararé**: encontra-se uma variação dos tipos de rochas, como arenito fino, diamictito, tilito, siltito, lamito, folheto, ritmito, varvito, conglomerado e raras camadas de carvão. Ambiente glácico-marinho. Estes afloramentos ocorrem a sudeste de Rio Claro.

- **Formação Tatuí**: composta em sua maioria por rochas de granulação fina, como siltito e siltito arenoso de cor cinza, arenito fino quartzoso, arenito cinza-esverdeado médio a grosso e imaturo calcário e silexito, ocasionais fragmentos e níveis de carvão, nódulos de pirita. Ambiente marinho raso. As exposições da Formação Tatuí ocorrem em faixas mais ou menos contínuas, acompanhando às do Grupo Itararé, na parte sul do município.

- **Formação Irati**: encontram-se presentes folhelhos, siltito e argilito cinza escuro, calcário, silexito, marga e folhelho betuminoso, portados de rochas matriz de fósseis de répteis mesossaurídeos. Ambiente marinho, deposição por decantação em águas calmas abaixo do nível de ação das ondas. Período de estratificação da coluna de água ou com influência de tempestades. A formação é encontrada na parte sul e sudeste do município.

- **Formação Corumbataí**: as unidades presentes são siltito argiloso, folhelho siltico e raro arenito e calcário micrítico e microesparártico, muciço ou laminado, sucedidos por arenito, interlaminação entre arenitos, siltitos e argilitos, com níveis de silexito coquinóide, siltitos e siltitos arenosos, calcário micrítico e marga. Ambiente marinho de costa-aflora a transicional, entre costa-afora e a face de praia. Esta formação é a principal fornecedora de matéria-prima para as indústrias do polo cerâmico da região, além de abranger a área mais expressiva de Rio Claro.

- **Formação Pirambóia**: constituidas por arenitos finos a médio, geometria lenticular bem desenvolvida, ambiente continental eólico com intercalações fluviais.

- **Formação Serra Geral**: basalto e basalto-andesito de filiação tholeítica, riolito e riodacito. Intercala camada de arenito, litoarenito e arenito vulcânico.

• Depósitos Colúvio-Eluvionares: sedimentos arenoso, arenoso-argiloso e conglomerático.

• Depósitos Aluvionares: sedimentos aluvionares inconsolidados constituídos por seixos, areias finas a grossas, com níveis de cascalhos, lentes de material silto-argiloso e restos de matéria orgânica, relacionados a planícies de inundação, barras de canal e canais fluviais atuais. Localmente podem ocorrer matacões.

Em alguns locais no município foram encontrados afloramento de rocha, especialmente de basalto pertencentes à formação Serra Geral. A imagem a seguir ilustra a informação e foi encontrada na estrada municipal de acesso à Floresta Estadual “Edmundo Navarro de Andrade” - FEENA.

Imagem 02. Afloramento de basalto na estrada municipal de acesso à Floresta Estadual “Edmundo Navarro de Andrade” - FEENA

![Imagem 02. Afloramento de basalto na estrada municipal de acesso à Floresta Estadual “Edmundo Navarro de Andrade” - FEENA](image)

Particularmente, em relação à Formação Corumbataí, os recursos minerais na Bacia do Rio Corumbataí envolvem água mineral, areia, argila, basalto, folhelho, calcário, diabásio
e dolomito. Destes, alguns se encontram em exploração, como as argilas em utilização pelas cerâmicas e rochas para brita; enquanto outros possuem depósito inativo por mina exaurida.

Já a Formação Rio Claro tem despertado grande interesse econômico pelo alto teor de sílica dos arenitos, sendo objeto de pesquisa e explotação mineral de areia industrial para vidros e moldes de fundição (ZAINE, 1994).

Segundo o estudo de Geodiversidade do Estado de São Paulo (CPRM, 2010), a Formação Corumbataí e Rio Claro apresentam limitações específicas, pois as unidades geológico-ambientais têm em sua composição estratigráfica, camadas de argilitos maciços de permeabilidade muito baixa, geralmente ríos e plásticos, com cerosidade elevada.

Além disso, oferecem dificuldades à escavação e/ou perfuração com sondas rotativas quando estão úmidos, ocorrendo também, camadas formadas por litologias microclásticas, folhelhos finamente laminados, com evidências de que são portadores de argilominerais expansivos. Consequentemente, os solos formados a partir destas, se exposto às variações dos estados úmido e seco, fendilham-se, desagregam-se em pequenas "pastilhas" tornam altamente suscetíveis à erosão.

Com relação à Formação Irati, as pedreiras de calcário da região em estudo, especialmente no distrito de Assistência exploram o calcário desta Formação. Além disso, são encontrados nestas, fósseis que comprovam a deriva continental e os veios de magma horizontais que comprovam o vulcanismo na região (Figura 04).
Figura 04. Perfil da Formação Irati no município de Rio Claro.

Com a criação do parque espera-se a visitação do público em geral e de pesquisadores, visto que o local contém uma histórica geológica rica que demonstra os processos de formação rochosa, além de conter amostras de fósseis, entre outros atributos (Apêndice E).
1.3. Geomorfologia

A superfície terrestre não é plana nem uniforme em toda a sua extensão. Ao contrário, caracteriza-se por elevações e depressões de diferentes formas (horizontais ou tabulares, convexas, côncavas, angulares e escarpadas) que constituem seu relevo. Ela é a ciência que estuda as formas de relevo, sua gênese, composição (materiais) e os processos que nelas atuam.

O relevo da superfície terrestre é o resultado da interação da litosfera, atmosfera, hidrosfera e biosfera, ou seja, dos processos de trocas de energia e matéria que se desenvolvem nessa interface, no tempo e no espaço. No espaço, o relevo varia da escala planetária (continentes e oceanos) à continental (cadeias de montanhas, planaltos, depressões e grandes planícies) e à local (escarpas, morros, colinas, terraços, pequenas planícies etc.). No tempo, sua formação varia da escala geológica, àquela do homem (FLOREZANO, 2008).

O mapa geomorfológico do município de Rio Claro foi produzido a partir dos dados disponibilizados no Banco de Dados Geomorfohêtricos do Brasil: Projeto TOPODATA, realização Instituto Nacional de Pesquisas Espaciais - INPE e Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, em formato shapefile e na escala 1:750.000.

Conforme o mapeamento geomorfológico apresentado no Apêndice F, os tipos de relevo no município são os de domínios de colinas dissecadas e morros baixos, sendo o mais predominante. O domínio de colinas amplas e suaves e planícies fluviais ou flúvio-lacustres percentualmente, são menos representativos (Imagem ilustrativa 03).

Imagem 03. Relevo característico no município de Rio Claro.

De acordo com a Imagem 03, o revelo apresenta ainda, algumas cuestas basálticas. Conceitualmente, cuestas são formas de relevo tabular, onde escarpas íngremes limitam um topo plano, formado por terras de maiores altitudes que se contrapõem a terras mais baixas e de vertentes mais suaves.

O atual estudo considerou também, as classes de declive, sendo observado que o domínio predominante, o de colinas dissecadas e morros baixos estão em uma faixa de declividade de 5 a 20m, com amplitude de topos de 30 a 80m e ocupam uma área absoluta de mais de 35 mil hectares. Colinas amplas e suaves e planícies fluviais ou flúvio-lacustres estão presentes em menores classes de declividade e de amplitude de topo, de acordo com Tabela abaixo.

Tabela 02. Tipos de relevo com respectivas faixas de declividade e área que ocupam no município de Rio Claro.

<table>
<thead>
<tr>
<th>Relevo</th>
<th>Faixa de declividade</th>
<th>Amplitude de topo</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domínio de colinas dissecadas e morros baixos</td>
<td>5 a 20m</td>
<td>30 a 80m</td>
<td>35.126,34</td>
</tr>
<tr>
<td>Domínios de colinas amplas e suaves</td>
<td>3 a 10m</td>
<td>20 a 50m</td>
<td>14.290,11</td>
</tr>
<tr>
<td>Planícies fluviais ou flúvio-lacustres</td>
<td>0 a 3m</td>
<td>0</td>
<td>1.252,03</td>
</tr>
</tbody>
</table>

As áreas com domínio de colinas dissecadas e morros baixos estão distribuídas por todo território, ocupando especialmente as extremidades do município. Já as colinas amplas e suaves estão localizadas mais na região central, onde abriga-se também, a zona urbanizada. As pequenas áreas com domínio de planícies fluviais ou flúvio-lacustres acompanham o leito do Rio Corumbataí.

1.4. Hipsometria

A curva hipsométrica é uma forma de representação gráfica do relevo médio da bacia hidrográfica que fornece a variação de elevação dos terrenos da bacia com relação ao nível do mar. O relevo é representado por curvas de nível e pontos cotados e as altitudes são expressas em metros.
Os estudos hipsométricos possibilitam conhecer o relevo de uma região de forma mais aprofundada e, também, quais são os fenômenos que se processam em sua superfície como, por exemplo, possibilidade de inferência nos processos erosivos, identificação de supostas áreas de inundação e enchente, dentre outros (ROSS, 1999).

No presente trabalho, o levantamento foi efetuado a partir do processamento dos arquivos em formato geotiff obtidos do projeto TOPODATA (VALERIANO, 2014), com auxílio da ferramenta “Contorno”, parte integrante do pacote “Ferramentas GDAL” disponíveis no Módulo QGIS Core (QGIS 2.2.0). O intervalo entre as linhas de contorno foi definido em 20 metros e os dados numéricos que representam as elevações foram fatiados em 9 classes temáticas (Apêndice G).

Desta forma, predominam no município elevações na faixa de 602 a 628 metros de altitude. A altitude máxima extraída do modelo digital de elevação foi de 899 metros e a mínima de 497 metros, detalhes estão descritos na Tabela 03.

<table>
<thead>
<tr>
<th>Altitude (metros)</th>
<th>Área em km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>497 a 541</td>
<td>26,63</td>
</tr>
<tr>
<td>541 a 576</td>
<td>76,85</td>
</tr>
<tr>
<td>576 a 602</td>
<td>96,89</td>
</tr>
<tr>
<td>602 a 628</td>
<td>106,97</td>
</tr>
<tr>
<td>628 a 652</td>
<td>89,47</td>
</tr>
<tr>
<td>652 a 677</td>
<td>56,00</td>
</tr>
<tr>
<td>677 a 706</td>
<td>24,45</td>
</tr>
<tr>
<td>706 a 742</td>
<td>15,78</td>
</tr>
<tr>
<td>742 a 899</td>
<td>05,36</td>
</tr>
</tbody>
</table>

Geograficamente, as áreas de maior altitude estão localizadas na região nordeste do município e as menores altitudes, circundam os cursos d'água, em especial o Rio Corumbataí.

Entretanto, uma das características mais importantes procedentes da variação hipsométrica é a declividade. A declividade média de uma bacia hidrográfica e do curso
d’água principal também são características que afetam diretamente o tempo de viagem da água ao longo do sistema de drenagem. O tempo de concentração de uma bacia diminui com o aumento da declividade (VEIGA et. al., 2011).

1.5. Declividade

A declividade do terreno representa o desnível relativo entre dois pontos da superfície terrestre. Ela representa um recurso natural que interfere diretamente na capacidade de uso da terra. Sua característica deve ser respeitada durante o processo de utilização. Em especial, declividade de encostas, elemento muito estudado, contribui em diversos processos de vertente, como os movimentos de massa e processos erosivos, além de interferirem também, nos processos de uso e ocupação dos solos (GUERRA & CUNHA, 1996).

Para a geração do mapa de declividade utilizou-se os dados provenientes do projeto TOPODATA (VALERIANO, 2014), em formato geotiff e foram processados com o software de geoprocessamento QGIS 2.2.0 usando as “Ferramentas GDAL” disponíveis no Módulo QGIS Core.

O fatiamento da grade de declividade foi determinado em intervalos, onde: 0-3%; 3-5%; 5-12%; 12-20%; 20-44% e >45%. Esses intervalos contemplam os espaços de declives adotados na definição das Classes de Capacidade de Uso das Terras (LEPSH & JÚNIOR-BELLINAZZI, 1983) cujo fatiamento da grade, obedeceu à inclinação do território do município e apresenta as seguintes características:

- 0 a 3% - corresponde a áreas planas ou quase planas onde o escoamento superficial é lento, não oferecendo dificuldades ao uso de máquinas agrícolas. Relevo Plano;

- 3 a 5% - são áreas de declives suaves, onde o escoamento superficial é lento ou médio. Em alguns tipos de solos a erosão hídrica não oferece problemas. Relevo Suave Ondulado;

- 5 a 12% - são áreas de declives suaves, onde o escoamento superficial é lento ou médio. Em alguns tipos de solos a erosão hídrica não oferece problemas. Solos com textura média em rampas muito longas necessitam de práticas de conservação de alguma complexidade. Relevo Suave Ondulado;
- 12 a 20 % - são áreas com relevo ondulado e o escoamento superficial é médio ou rápido. São facilmente erodíveis (exceto em solos argilosos ou muito argilosos). Relevo Ondulado;

- 20 a 40 % - constituem vertentes fortemente inclinadas, com escoamento muito rápido, independente do tipo de solo. Solos muito suscetíveis à erosão. Relevo Forte Ondulado;

- > 45% - apresentam sérios impedimentos ao uso, exigindo práticas muito complexas (projetos de drenagem), e devem ser mantidas, preferencialmente, como áreas de preservação ambiental. Relevo Escarpado.

Assim, o relevo dominante no município de Rio Claro é o suave ondulado, relevo plano e ondulado, respectivamente (Apêndice H - Mapa de Declividade). Áreas com características de relevo escarpado foram identificadas em uma pequena porção do município.

Tabela 04. Classes de declividade do município de Rio Claro.

<table>
<thead>
<tr>
<th>Classes de declividade</th>
<th>Área (ha)</th>
<th>Domínio/Relevo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 3%</td>
<td>8.671,32</td>
<td>Plano</td>
</tr>
<tr>
<td>3 a 5%</td>
<td>8.051,55</td>
<td>Suave ondulado</td>
</tr>
<tr>
<td>5 a 12%</td>
<td>25.020,80</td>
<td>Suave ondulado</td>
</tr>
<tr>
<td>12 a 20%</td>
<td>7.039,43</td>
<td>Ondulado</td>
</tr>
<tr>
<td>20 a 44%</td>
<td>1.052,75</td>
<td>Forte ondulado</td>
</tr>
<tr>
<td>> 45%</td>
<td>6,35</td>
<td>Escarpado</td>
</tr>
</tbody>
</table>

Nas áreas com declive inferior a 12%, predominam superfícies inclinadas, geralmente com relevo ondulado, nas quais o escoamento superficial, para a maior parte dos solos, é médio ou rápido. O declive também não prejudica o uso de máquinas agrícolas. Em alguns casos, a erosão hídrica oferece pequenos problemas que podem ser controlados com práticas simples, mas na maior parte das vezes, práticas complexas de conservação do solo são necessárias para que terras com esse declive possam ser cultivadas intensivamente (Imagem 04).
Imagem 04. Ilustrativo da declividade predominante do município de Rio Claro.

As áreas com declividade acima de 12%, com domínio de relevo ondulado, forte ondulado e escarpado são percentualmente menos representativas quando comparadas as demais, porém demandam de cuidados, pois apresentam sérias restrições à mecanização agrícola e maior suscetibilidade à instalação de processos erosivos.

A declividade do modelado terrestre pode ser atribuída como um dos fatores controladores do processo erosivo, tendo o declive papel significante no desenvolvimento dos processos erosivos, sobretudo em áreas de classes elevadas. Tais áreas, desprovidas de cobertura vegetal, tomada pela monocultura canavieira podem agravar a dinâmica erosiva (CUNHA, 2001).

1.6. Pedologia

A pedologia é a ciência que estuda o solo, sendo ele considerado uma coleção de corpos naturais, constituídos por partes sólidas, líquidas e gasosas, tridimensionais, dinâmicos, formados por materiais minerais e orgânicos, contendo matéria viva e ocupando a maior porção do manto superficial das extensões continentais do planeta (EMBRAPA, 2006).

Como recurso natural dinâmico, o solo é passível de ser degradado em função do uso inadequado pelo ser humano. Nesta condição, o desempenho de suas funções básicas fica severamente prejudicado, acarretando interferências negativas no equilíbrio ambiental, diminuindo drasticamente a qualidade de vida nos ecossistemas, principalmente naqueles que sofrem mais diretamente a interferência humana como os sistemas agrícolas e urbanos.

Afim de melhor orientação, os solos são classificados conforme seus atributos e características, no Brasil o Sistema Brasileiro de Classificação de Solos, foi desenvolvido pela EMBRAPA e tem sido constantemente atualizado. As definições, conceitos e critérios taxonômicos utilizados na classificação e diferenciação dos mais variados tipos de solos são organizados em ordem, subordem, grandes grupos, subgrupos, famílias e séries.

Para identificação dos tipos de solos existentes no município de Rio Claro, conforme classificação pedológica padronizada utilizou-se como base o Mapa Pedológico do Estado de São Paulo com Legenda Expandida - Instituto Agronômico de Campinas - IAC e a classificação de solos da EMBRAPA, Centro Nacional de Pesquisa de Solos do Sistema Brasileiro de Classificação de Solos.

Em Rio Claro, a área territorial é formada pela ordem dos Argissolos, Latossolos e Neossolos, respectivamente. Elas se subdividem em diferentes tipos, conforme suas características físico-químicas, processos de formação, horizontes diagnósticos, tipo de arranjo dos horizontes, atividade de argila, dentre outras, separando-as em unidades cada vez mais homogêneas.
Apesar disso, a cor é um dos principais atributos a ser considerado no método de classificação dos solos, indicando a riqueza em matéria orgânica e a natureza mineralógica dos óxidos de ferro presentes. No município, a coloração avermelhada é encontrada distintivamente em todo o território, Imagem 05.

Imagem 05. Coloração avermelhada dos solos no município de Rio Claro.

Área de construção do novo Fórum. Estrada municipal de acesso à FEENA.

A cor permite ainda, inferências importantes a respeito da história biogeoquímica dos solos e as características morfológicas e ambientais atinentes à fertilidade dos solos. Para os tons avermelhados, considera-se: a) Cor vermelha com baixos teores de Fe$_2$O$_3$ - presença (domínio) de hematita; pobreza em elementos traços e P total, com boa drenagem (translocação de água e nutrientes); b) Cor vermelha, com altos teores de Fe$_2$O$_3$ - presença de hematita, magnetita e maghemita; riqueza em elementos traços e P total; boa drenagem (RESENDE et., al. 1988).

Segundo dados da EMBRAPA (AGEITEC, 2014), os Argissolos são solos formados por uma classe bastante heterogênea que, em geral, tem em comum um aumento substancial no teor de argila em profundidade. São bem estruturados, apresentam profundidade variável e cores predominantemente avermelhadas ou amareladas, textura variando de arenosa a argilosa nos horizontes superficiais e de média a muito argilosa nos subsuperficiais; sua fertilidade é variada e a mineralogia, predominantemente caulinítica.
Enquanto os Latossolos são solos resultantes de enérgicas transformações no material originário ou oriundos de sedimentos pré-intemperizados onde predominam, na fração argila, minerais nos últimos estágios de intemperismo (caulinitas e óxidos de ferro e alumínio). A fração areia existente é dominada por minerais altamente resistentes ao intemperismo, de textura variável, de média a muito argilosa, geralmente muito profundos, porosos, macios e permeáveis, apresentando pequena diferença no teor de argila em profundidade e, comumente, são de baixa fertilidade natural.

Na sequência, os Neossolos são solos pouco evoluidos, apresentam pequena expressão dos processos responsáveis pela sua formação, que não conduziram com as modificações expressivas do material originário. Diferenciam-se em grande parte pelo seu material de origem e paisagem, como depósitos sedimentares (planícies fluviais, sedimentos arenosos marinhos ou não) e regiões de relevo acidentado.

As subordens dos solos encontrados no município são representadas pelas classes dos Argissolos Vermelhos - Amarelos (PVA); Latossolos Vermelhos (LV) e Latossolos Vermelhos – Amarelos (LVA) e Neossolos Litólicos (RL). A Tabela 05 traz a descrição morfológica proveniente do mapeamento de solos (em grandes grupos de solo) e maiores detalhes podem ser visualizados no Mapa Pedológico, contido do Apêndice G.

Tabela 05. Descrição morfológica dos solos encontrados no município de Rio Claro com as respectivas áreas de abrangência.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição morfológica</th>
<th>Área (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA 31</td>
<td>Distróficos abrúpticos ou não, A moderado textura arenosa / média argilosa e argilosa rel. ondulado.</td>
<td>24,1</td>
</tr>
<tr>
<td>PVA 27</td>
<td>Distróficos abrúpticos A moderado textura arenosa / média rel. ondulado.</td>
<td>18,2</td>
</tr>
<tr>
<td>PVA 32</td>
<td>Distróficos abrúpticos ou não, A moderado textura argilosa e média / argilosa rel. ondulado.</td>
<td>15,3</td>
</tr>
<tr>
<td>PVA 59</td>
<td>Distróficos abrúpticos textura média / argilosa + ARGISSOLOS VERMELHOR-AMARELOS Distróficos textura argilosa e média / argilosa ambos A moderado rel. ondulado.</td>
<td>4,7</td>
</tr>
</tbody>
</table>
ARGISSOLOS VERMELHO-AMARELOS (PVA)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição morfológica</th>
<th>Área (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA 97</td>
<td>(Grupamento indiscriminado de ARGISSOLOS VERMELHO-AMARELOS arênicos A moderado textura arenosa / média e ARGISSOLO VERMELHOS textura argilosa) + LATOSSOLOS VERMELHOS Distróficos A moderado textura argilosa todos rel. suave ondulado + NEOSSOLOS LITÓLICOS Eutróficos A moderado e chernozêmico e Distróficos A moderado rel. ondulado.</td>
<td>3,7</td>
</tr>
<tr>
<td>PVA 76</td>
<td>Distróficos abrúpticos ou não, arênicos ou não, A moderado textura arenosa / média rel. suave ondulado e ondulado + NEOSSOLOS LITÓLICOS Eutróficos A moderado e proeminente textura indiscriminada rel. ondulado.</td>
<td>1,9</td>
</tr>
</tbody>
</table>

LATOSSOLOS VERMELHOS (LV) e LATOSSOLOS VERMELHOS-AMARELOS (LVA)

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição morfológica</th>
<th>Área (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV 04</td>
<td>Eutroférricos e Distroférricos + LATOSSOLOS VERMELHOS Distróficos ambos A moderado textura argilosa rel. suave ondulado.</td>
<td>18,2</td>
</tr>
<tr>
<td>LVA 06</td>
<td>Distróficos A moderado textura média rel. suave ondulado e plano.</td>
<td>5,9</td>
</tr>
<tr>
<td>LV 09</td>
<td>Eutroférricos e Distroférricos rel. suave ondulado + NITOSSOLOS VERMELHOS Eutroférricos rel. ondulado todos A moderado + NEOSSOLOS LITÓLICOS Eutróficos A moderado e chernozêmico rel. ondulado todos textura argilosa.</td>
<td>1,7</td>
</tr>
<tr>
<td>LV 58</td>
<td>Distróficos A moderado textura argilosa + LATOSSOLOS VERMELHO-AMARELOS Distróficos A húmico textura média e argilosa ambos rel. suave ondulado e plano.</td>
<td>1,4</td>
</tr>
<tr>
<td>LVA 04</td>
<td>Distróficos A moderado textura média rel. suave ondulado.</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Continuação...

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descrição morfológica</th>
<th>Área (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 14</td>
<td>Associação de NEOSSOLOS LITÓLICOS Distróficos Tb textura média + CAMBISSOLOS HÁPLICOS Tb Distróficos textura média ou argilosa ambos A moderado + AFLORAMENTOS DE ROCHAS todos rel. montanhoso.</td>
<td>2,2</td>
</tr>
<tr>
<td>RL 18</td>
<td>Eutróficos A moderado e chernozêmico e Distróficos A moderado e proeminentes ambos textura média + NEOSSOLOS LITÓLICOS cascalhentos indiscriminados todos rel. forte ondulado e ondulado.</td>
<td>0,1</td>
</tr>
<tr>
<td>RL 25</td>
<td>Eutróficos e Distróficos textura indiscriminada rel. ondulado e forte ondulado + ARGISSOLOS VERMELHO-AMARELOS Distróficos abrupticos rel. ondulado ambos A moderado + GLEISSOLOS HÁPLICOS e Melânicos ambos Distróficos rel. de várzea.</td>
<td>1,6</td>
</tr>
</tbody>
</table>

A predominância dos solos Argissolos Vermelho-Amarelo se faz presente em 68% do município de Rio Claro, sendo os mais representativos desta classe os PVA 31 (24,1%), seguidos dos PVA 27 (18,2%) e dos PVA 32 (15,4%). Esses solos apresentam algumas limitações agrícolas que estão condicionadas à baixa fertilidade, acidez, teores elevados de alumínio e a suscetibilidade aos processos erosivos, principalmente quando ocorrem em relevos mais movimentados.

A utilização dos Argissolos exige um manejo adequado, sobretudo pela limitação da água no perfil, provocado pela descontinuidade textural entre os horizontes. Para sua utilização agrícola necessita-se da adoção de práticas especiais de conservação do solo, como sistema de terraceamento em desnível. Esta deve ser utilizada juntamente a outras práticas complementares de conservação, que promovam uma menor mobilização e uma boa cobertura vegetal, o que acarretará na sua exploração com bons resultados.

Ainda em relação aos Argissolos, os solos Podzólicos Vermelho-Amarelo são no geral de textura média/argilosa, presentes nos vales do Rio Corumbataí e no Ribeirão Claro.
que segundo estudo de Oliva (2006) formaram-se a partir de sedimentos finos dos Grupos Rochosos Passa Dois e Tubarão.

Os Latossolos Vermelhos, com domínio do LV 04 ocupam 18,2% da área, seguido do LV 09 (1,7%) e do LV 58 (1,45%) que juntos, em área relativa são na ordem de 21,3% dos Latossolos identificados em todo o município. Enquanto, os Latossolos Vermelho-Amarelos representados pelos subgrupos LVA 06 e LVA 04, somam 6,9% da área.

Os Neossolos Litólicos, RL 14, RL 18 e RL 25, representam 3,9% da área municipal. Conquanto a área seja de pouca expressão quantitativa, eles estão associados geograficamente à porção nordeste com a presença dos siltitos e argilitos da Formação Corumbataí e na área sul, com a Formação Irati e as intrusões de diabásio além de estarem presentes nas áreas com predomínio de maior relevo.

Em Rio Claro, os Neossolos Litólicos identificados são distróficos e assim, apresentam-se como de baixa fertilidade natural, sendo também, mais ácidos e demandando de maior uso de adubação e de calagem para correção da acidez. Apesar disso, aqueles localizados em áreas de maior declividade, oferecem restrição à mecanização e forte suscetibilidade a instalação de processos erosivos.

O domínio dos solos distróficos no município também deve ser um ponto a ser considerado. Conceitualmente, caracterizam-se por solos que apresentam saturação por bases inferior a 50% em profundidade, sendo avaliados como solos de média ou baixa fertilidade no horizonte B. Nestes solos, a recuperação da fertilidade pode ser realizada em camadas subsuperficiais com aplicação de gesso agrícola, como corretivo.

O gesso agrícola é um subproduto da fabricação de ácido fosfórico que apresenta, em função de sua solubilidade, efeitos amplamente positivos no aumento do teor de cálcio e diminuição da toxidez de alumínio nas camadas subsuperficiais do solo, induzindo um maior aprofundamento do sistema radicular e maior produtividade de várias culturas. A dose de aplicação de gesso agrícola deve ser guiada pela análise química do solo, considerando
também a textura, o teor de matéria orgânica, a proporção de cálcio em relação a outros cátions e a espécie vegetal a ser cultivada (LOPES & GUILHERME, 1994).

A melhoria do ambiente radicular condicionada pelo gesso se dá, principalmente, pela presença do íon sulfato (SO\(_4^{2-}\)) que, por ser altamente móvel no solo é capaz de formar pares iônicos com cátions de reação básica e descer, enriquecendo o perfil do solo. O sulfato também forma par com o alumínio (Al\(^{3+}\)), formando precipitados, reduzindo a atividade do Al\(^{3+}\).

Desta forma, a aplicação do gesso agrícola em solos distróficos mediará um crescimento radicular profundo que facilitará a infiltração de água, a resistência à seca trazendo benefícios também, no controle dos processos erosivos. Para HAMBLIN (1985), a qualidade física do solo para o crescimento das plantas é determinada não só pela disponibilidade de água, aeração e temperatura, mas também pela resistência que a matriz do solo oferece à penetração das raízes.

O levantamento de solos é indispensável para um planejamento agrícola em sintonia com o ambiente, facilitando a difusão de tecnologias apropriadas para cada grupo de solos (LEPSCH et. al., 1991). Eles constituem-se ainda, como a melhor ferramenta para o planejamento agrícola e estratificação ambiental. Aprimorá-los, alterando conceitos pedológicos e adequando detalhamentos compatíveis com a necessidade de informação que a agricultura mais tecnificada exige, seria uma decisão útil à agricultura e a vários projetos ambientais e, certamente, ao futuro da pedologia no país.

1.7. Microbacia hidrográfica

Em linhas gerais, a rede hidrográfica é formada por um conjunto de rios dispostos em hierarquias encontrados nas bacias hidrográficas. Conceitualmente, essas bacias são localidades da superfície terrestre separadas topograficamente entre si, cujas áreas funcionam como receptores naturais das águas pluviais. Assim, todo o volume de água captada não infiltrada é automaticamente escoado por meio de uma rede de drenagem das áreas mais altas para as mais baixas, seguindo uma hierarquia fluvial, até concentrarem-se em um único ponto, formando um rio principal.

No Brasil faltam dados hidrográficos das pequenas bacias, pois os estudos são geralmente focados em bacias acima de 500km\(^2\), dados principalmente de hidroelétricas. Contudo, o monitoramento das microbacias é de fundamental importância para a
complementação de uma rede de informações do ciclo hidrológico e seus processos físicos, químicos e biológicos atuantes.

O estudo das microbacias em Rio Claro, foi realizado mediante produção do Mapa de Microbacia Hidrográfica (Apêndice J), gerado em escala 1:50.000, conforme a precisão e acurácia do material de origem – Modelo Digital de Terreno (MDT). Na primeira análise, foi realizada a checagem da hidrografia atualizada do município frente à divisão das microbacias. As informações também foram checadas junto à Prefeitura Municipal de Rio Claro.

O município é composto por 17 microbacias hidrográficas, a saber: Alto Ribeirão Claro, Alto Corumbataí, Médio Corumbataí, Jacutinga, Assistência, Baixo Ribeirão Claro, Ibitinga, Sapezeiro, Cachoeirinha, Servidão, Alto Cabeça, Campo do Cocho, Baixo Corumbataí, Baixo Cabeça, Médio Cabeça, Baixo Passa Cinco e Rio Jacú (Tabela 06; Figura 05).

Tabela 06. Área absoluta e relativa das microbacias hidrográficas que compõem o município de Rio Claro.

<table>
<thead>
<tr>
<th>Microbacia hidrográfica</th>
<th>Área absoluta (ha)</th>
<th>Área relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto Ribeirão Claro</td>
<td>9.703</td>
<td>19,56</td>
</tr>
<tr>
<td>Alto Corumbataí</td>
<td>6.196</td>
<td>12,49</td>
</tr>
<tr>
<td>Médio Corumbataí</td>
<td>5.747</td>
<td>11,59</td>
</tr>
<tr>
<td>Jacutinga</td>
<td>3.848</td>
<td>7,76</td>
</tr>
<tr>
<td>Assistência</td>
<td>3.567</td>
<td>7,19</td>
</tr>
<tr>
<td>Baixo Ribeirão Claro</td>
<td>3.017</td>
<td>6,08</td>
</tr>
<tr>
<td>Ibitinga</td>
<td>2.560</td>
<td>5,16</td>
</tr>
<tr>
<td>Sapezeiro</td>
<td>2.260</td>
<td>4,56</td>
</tr>
<tr>
<td>Cachoeirinha</td>
<td>1.927</td>
<td>3,90</td>
</tr>
<tr>
<td>Servidão</td>
<td>1.815</td>
<td>3,66</td>
</tr>
<tr>
<td>Alto Cabeça</td>
<td>1.727</td>
<td>3,48</td>
</tr>
<tr>
<td>Campo do Cocho</td>
<td>1.603</td>
<td>3,23</td>
</tr>
</tbody>
</table>
Contínuação...

<table>
<thead>
<tr>
<th>Microbacia hidrográfica</th>
<th>Área absoluta (ha)</th>
<th>Área relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo Corumbataí</td>
<td>1.306</td>
<td>2,63</td>
</tr>
<tr>
<td>Baixo Cabeça</td>
<td>1.189</td>
<td>2,40</td>
</tr>
<tr>
<td>Médio Cabeça</td>
<td>1.093</td>
<td>2,20</td>
</tr>
<tr>
<td>Baixo Passa Cinco</td>
<td>1.060</td>
<td>2,13</td>
</tr>
<tr>
<td>Rio Jacú</td>
<td>978</td>
<td>1,97</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49.597</td>
<td>100</td>
</tr>
</tbody>
</table>

Em destaque a microbacia Alto Ribeirão Claro é a maior e a Rio Jacú, representa a menor área territorial municipal. As microbacias Médio Corumbataí, Servidão, Baixo Ribeirão Claro, Cachoeirinha e Alto Corumbataí são urbanizadas, sendo que praticamente toda a área territorial do MH Servidão, aloja a zona urbana.
Figura 05. Representação cartográfica das microbacias hidrográficas do município de Rio Claro.

Representação Cartográfica das Microbacias Hidrográficas do Município de Rio Claro

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Lei nº 5.197, de 03 de janeiro de 1967. Dispõe sobre a proteção à fauna e dá outras providências.

COORDENAÇÃO GERAL
EcosBio - Projetos Agroindustriais e Ambientais - LTDA

EQUIPE TÉCNICA

Responsável Técnico
Engenheiro Agrônomo Samir Mussa
CREA-SP 0600752462

Engenheira Ambiental
Cibele Midori Sato
CREA-SP 5063530798

Engenheiro Agrimensor
Ídolo Guastaldi Júnior
CREA-SP 0600495231

Engenheiro Geólogo
Marcelo Gomes de Oliveira Néias
CREA-SP 0400517881

Engenheira Química
Lice Fronza
CREA-SP 5063530925

Edição Gráfica e Cadista
Denis Diego Pereira dos Santos
APÊNDICES

Apêndice A – Mapa Base
Apêndice B – Mosaico
Apêndice C – Altimetria
Apêndice D – Geologia
Apêndice E – Mapa do Parque Geológico
Apêndice F – Geomorfologia
Apêndice G – Hipsometria
Apêndice H – Declividade
Apêndice I – Pedologia
Apêndice J – Microbacias Hidrográficas
Apêndice F - Geomorfologia

Legenda

- Ferrovia
- Rodovias
- Áreas antropizadas
- Limito municipal
- RELVO
- Domínio de colinas amplas e suaves
- Domínio de colinas disseccadas e morros baixos
- Planícies fluviais ou flúvio-lacustres

Observação nos rótulos - siga das unidades

Referência:
- Cartas do IDEGE
- GEOBANK - Serviço Geológico do Brasil
- Medico Digital de Feitores TOPODATA

Notas técnicas

Projeção: UTM - Datum SIRGAS 2000
Meridiano central: 45 graus
Fuso: 23
Escala: 1:150.000
Data: 27/08/2014